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Tallgrass prairie ecosystems in North America are heavily degraded and require effective

restoration strategies if prairie specialist taxa are to be preserved. One common

management tool used to restore grassland is the application of a seed-mix of native

prairie plant species. While this technique is effective in the short-term, it is critical that

species’ resilience to changing climate be evaluated when designing these mixes. By

utilizing species distribution models (SDMs), species’ bioclimatic envelopes–and thus

the geographic area suitable for them–can be quantified and predicted under various

future climate regimes, and current seed-mixes may be modified to include more climate

resilient species or exclude more affected species. We evaluated climate response

on plant functional groups to examine the generalizability of climate response among

species of particular functional groups. We selected 14 prairie species representing

the functional groups of cool-season and warm-season grasses, forbs, and legumes

and we modeled their responses under both a moderate and more extreme predicted

future. Our functional group “composite maps” show that warm-season grasses, forbs,

and legumes responded similarly to other species within their functional group, while

cool-season grasses showed less inter-species concordance. The value of functional

group as a rough method for evaluating climate-resilience is therefore supported, but

candidate cool-season grass species will require more individualized attention. This result

suggests that seed-mix designers may be able to use species with more occurrence

records to generate functional group-level predictions to assess the climate response of

species for which there are prohibitively few occurrence records for modeling.
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INTRODUCTION

Prairies in the United States are among the most degraded
habitats in the world (Larson et al., 2011), and as such,
have necessitated active restoration, particularly for the plant
communities historically found in these systems (Vogel et al.,
2007; Debinski et al., 2011; Pillsbury et al., 2011; Delaney et al.,
2015). The addition of native plant seeds via seed-mixes is one
restoration tool used to speed the re-colonization of degraded
prairies by native prairie plant species (Dickson and Busby, 2009;
Larson et al., 2011). However, the composition of seed-mixes can
be limited by seed availability, cost of seeds from rare plants,
or even a focus on particular seed ecotypes, thus restricting the
possible combinations of species in a seed-mix used for a given
area. The number of different species and relative abundance
of seeds included in a given seed-mix must then be considered
from ecological, economic, and logistical perspectives, and the
success of the end-product is often judged years after the seed-
mix is first implemented (Dickson and Busby, 2009). Given the
need for viable restoration strategies in prairies, it is imperative
that restoration efforts be successful in longer timeframes than is
usually feasible for empirical monitoring. Modeling approaches
can serve as a valuable tool in this regard, especially when the
input data are easily collected or publicly available.

In particular, species distribution models (SDMs) can be used
relatively easily (Kane et al., 2017) to assess how the effectiveness
of species in a restoration seed-mix will change under different
future climate predictions, and seed-mix composition can then
be modified in the present without the need to wait years for
experimental results. SDMs are used to predict the environmental
suitability of a continent or landscape for individual species
both in present conditions and under a variety of future climate
change scenarios (Soberón and Nakamura, 2009; Elith et al.,
2011). These models correlate current occurrence records of a
species with the temperature and precipitation in that area to
generate a prediction of the bioclimatic envelope for individual
species, which can then be projected across a current or future
landscape (Pearson and Dawson, 2003; Araújo and Guisan,
2006; Soberón and Nakamura, 2009; Elith et al., 2011). Climate
data alone are sufficient predictors at macro-ecological scales
(Pearson and Dawson, 2003), which increases the potential
utility of these models to managers and researchers working
with limited resources. These models are generally considered
to generate robust predictions even in the absence of data on
biotic factors, land-use, and soil type (Thuiller et al., 2004;
Pearson et al., 2007), making them especially useful for species
for which publicly available data are sparse or for projects where
it is not feasible to collect occurrence records prior to model
construction. By employing SDMs on prairie plant species used
in a seed-mix currently in use in southern Iowa, the impact
of possible climatic futures can be quantified and the utility of
SDMs in recommending changes to seed-mix composition may
be assessed. In addition, including multiple species from each
of several functional groups (e.g., cool-season grasses, warm-
season grasses, forbs, and legumes) can allow the conservation of
response within functional group to be examined. This functional
group-level response is especially relevant given the potential for

functional group predictions to be used as a proxy for species
without prerequisite data for their own models.

We hypothesized that (1) plant functional groups will show
relatively conserved responses to changing climate and (2) most
modeled species will show increasing suitability in the northern
extent of their range and decreasing suitability in the southern
edges of their range regardless of how conserved the response is
within functional group.

MATERIALS AND METHODS

Species Selection
To best assess the relevance of this modeling approach to
managers, we retrieved publicly available occurrence records for
all 26 tallgrass prairie plant species in a seed-mix currently used in
the American Midwest. Of this initial pool, only 14 species were
selected for modeling based on sufficient occurrence records.
These species represent four functional groups: cool-season (C3)
grasses, warm-season (C4) grasses, forbs (here defined as non-
leguminous flowering plants), and legumes (Table 1). While
this functional group approach leaves three of the functional
groups presented here with relatively few included species, the
limited number of species with enough occurrence records to
model is likely to be a constraint encountered by managers
using this approach, so modeling proceeded despite the reduced
representation in some groups. Species occurrence records across
North America were obtained from the Global Biodiversity
Information Facility, the University of California Berkeley’s Eco
Engine, and the BISON database from United States Geological
Survey via their packages in the R statistical environment—
version 3.3.1—, “rgbif,” “ecoengine,” and “rbison” respectively
(Chamberlain, 2016; Chamberlain et al., 2016; Ram, 2016). Only
data that met Darwin Core standards (Wieczorek et al., 2012)
were used. Records from outside of the tallgrass prairie region
were included to ensure that the full range of environmental
conditions each species has been observed to exist in was
represented in our models.

Predictor Selection
All data for the climate-predictor variables were obtained
from the WorldClim Global Climate Dataset—version 1.4—at
a 2.5min resolution (an area of ∼5 km2 at the equator) using
the same latitude and longitude bounds as those used for species
occurrence data. This broad scale (both in terms of pixel size and
spatial extent of model) was selected to prevent inappropriately
fine interpretation of model outputs, as this has been indicated as
an area of concern in projects utilizing presence-only modeling
(Yackulic et al., 2013). WorldClim uses data from a large number
of surface meteorological stations and applies an interpolation
algorithm to generate spatially gridded data (Hijmans et al.,
2005). Initially, all models are informed by eight bioclimatic
(BIOCLIM) variables: mean temperature for the wettest (BIO8),
driest (BIO9), warmest (BIO10), and coldest (BIO11) quarters
averaged from 1960 to 1990 as well as the mean precipitation
for the same quarters (BIO16 through 19 respectively). These
variables were selected because they are the finest temporal
BIOCLIM variables and are thus most likely to represent
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TABLE 1 | Functional groups of modeled species.

Functional group Scientific name Common name

Cool-season (C3)

Grass

Elymus virginicus (L.) Virginia wildrye

Koeleria macrantha (Ledeb.)

Schult.

Prairie junegrass

Stipa spartea (Trin.) Barkworth Porcupine grass

Warm-season (C4)

grass

Bouteloua curtipendula (Michx.)

Torr.

Sideoats grama

Schizachyrium scoparium

(Michx.) Nash

Little bluestem

Sorghastrum nutans (L.) Nash Indian grass

Forb Asclepias incarnata (L.) Swamp milkweed

Asclepias syriaca (L.) Common milkweed

Asclepias tuberosa (L.) Butterfly milkweed

Drymocallis arguta Lehm. Prairie cinquefoil

Lobelia siphilitica (L.) Blue lobelia

Monarda fistulosa (L.) Wild bergamot

Legume Amorpha canescens Pursh LeadPlant

Dalea candida Michx. ex Willd. White prairie clover

the intra-annual climatic variation species must tolerate. Only
BIOCLIM variables with a Pearson correlation coefficient of<0.7
with the other BIOCLIM variables at occurrence locations were
included in training each model; this value was reduced from
the 0.75 threshold used by Kane et al. (2017) due to the use of
a greater number of predictor variables. Correlation was assessed
on a per-species basis (Pearson and Dawson, 2003; Elith et al.,
2010). The predictor variables used for each species are found
in Table S1.

SDMs for the mid-Twenty first century (2041–2060) were
built with the projected climate from the National Center for
Atmospheric Research (United States) CCSM4 global climate
model (GCM) in two Representative Concentration Pathway
(RCP) emissions scenarios (RCP 4.5 and 8.5). The CCSM4 GCM
predicts an average increase of 2.5◦C across North America for
RCP 4.5 and a 4.4◦C average increase for RCP 8.5, and neither
predicted future shows an average change of more than 1 cm
in rainfall. Hereafter RCP 4.5 is referred to as the “moderate”
future and RCP 8.5 as “extreme” future. The CCSM4 GCM
is thus an ideal candidate for suitability response comparisons
between possible future conditions because of the effective
standardization of most variables other than temperature. This
GCM also shows relatively low error frequency when compared
to the observed climate for parts of North America (Rupp
et al., 2013). Additionally, by using only RCPs from the same
GCM, we control for any differences in model convention in the
construction of these climate datasets, and therefore eliminate
suitability prediction differences that are mere artifacts of
GCM construction.

Modeling Methods
Current and future SDMs for each of the selected species
were created with the modeling software MaxEnt version 3.3.3k

(Elith et al., 2011) through its interface with the R statistical
environment. Occurrence records were thinned in multivariate
environmental space to account for potential oversampling of
environmental conditions following from geographic sampling
bias (de Oliveira et al., 2014) via principal components analysis
(PCA) of the predictor variables associated with each occurrence
record. The points were plotted against PC1 and PC2 and
one record was randomly selected wherever multiple records
overlapped. All models constructed had 40 or more occurrence
records after environmental thinning (Table S1), to stay well
above the recommended 25 minimum number of occurrence
records (Pearson et al., 2007).

For each species, corrected Akaike Information Criterion
(AICc) values were compared between models with MaxEnt’s
regularization parameter (β) set at 0.5, 1, 2, 3, 4, or 5, and
the model with the lowest AICc was selected (Warren and
Seifert, 2011). After each species’ current distribution model was
generated, projections into each predicted future were conducted
for each species. In order to limit extrapolation, all models
constructed used the default “clamping” option within MaxEnt
such that climate values outside of those used to train the
model are treated as if they were the end of the training range
(Elith et al., 2011). All suitability predictions are made in the
logistic output format such that predictions range from 1 (100%
probability of presence) to 0 (0% probability of presence) on a
continuous scale (Phillips and Dudík, 2008).

All models were evaluated by the area under the receiver-
operator characteristic curve (AUC) (Merow et al., 2013; Kane
et al., 2017). Cross-validation by resampling k-folds (k = 5)
was performed to obtain a more discriminant AUC value, and
for all models mean AUC was >0.82, indicating robust model
performance for all species distributionmodels (Table S1).While
AUC has been criticized as a method of model evaluation
(Fourcade et al., 2018), our use of relatively few BIOCLIM
variables (average of five predictor variables across all 14
species), coupled with our restriction of interpretation to climatic
suitability rather than realized distribution both minimizes
inflation of AUC and allows for relaxed predictor selection at
the outset.

Due to our interest in the similarity of response of
species within the same functional group rather than the
response of particular species—and the high number of
species-specific output models generated as a result of this
process (42 total)—only composite maps are presented here to
facilitate evaluation of functional group response. Composite
maps demonstrate the number of modeled species that
performed at or better than a given threshold of suitability.
Composite maps presented here use 50% as that threshold
such that each map demonstrates high suitability explicitly
while allowing for equal interpretation of low suitability (e.g.,
if two species are doing well in a given area that means
that the remainder of the species are not above the suitability
threshold). A limitation of this approach is the loss of much
of the gradient of suitability response but given the dramatic
increase in interpretability to non-specialist audiences and likely
relevance of such interpretability to managers, we continued in
this vein.
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RESULTS

Cool-Season Grasses
Cool-season grasses did not exhibit a conserved response to
either predicted future (Figure 1). All three cool-season grass
species were predicted to have>50% suitability in only small and
isolated areas outside of the American Midwest. However, in the
RCP 8.5 predicted future, bioclimatic suitability for two of the
three species was above the threshold throughout much of Iowa,
Nebraska, and Kansas. There were areas in the Southeast and
Northern Midwest for which all three species had low predicted
suitability, so this offers partial support for this functional
group sharing certain conditions that are unsuitable while the
specific tolerances to less negative conditions vary by species.
Interestingly, agreement between species of this group increased
from present conditions tomoderate future and increased further
from the moderate to extreme future.

Warm-Season Grasses
In contrast to the apparent lack of consensus in cool-season grass
response, warm-season grasses tended to respond similarly in
both future conditions (Figure 2). Not only did all three species
show >50% future suitability throughout the vast majority of the
American Midwest, for much of the Eastern half of the nation,
two species remained above that threshold. Additionally, all three
species showed below 50% suitability in the American southeast,
and this area of low suitability remained consistent between the
two RCPs. The area of overlapping suitability nearly doubled
in size from present conditions to the moderate future though
remained largely static between the two future predictions.

Forbs
More forb species were modeled than any other functional group
in this project, making the observed conservation of response
among those species even more striking. Not only does the
area of above 50% suitability overlap for nearly all modeled
species; most species are also below the threshold when any
one is (Figure 3). Areas of suitable conditions are largely in the
American Northeast and most of that area is projected to be
suitable for at least five of the six modeled forb species. While in
RCP 4.5 very little of the American Midwest is suitable for even
one species, in RCP 8.5 this area is projected to be suitable for at
least one species (and in many areas as many as three).

Legumes
While only two legume species had sufficient occurrence records
for modeling, and our inferential abilities are therefore limited,
the areas of consensus are of note. The American Midwest is
projected to be suitable for both legume species in both futures
(Figure 4), though the specific area is somewhat north of the
suitable area for warm-season grasses and west of forb areas.
As with warm-season grasses, the area in present conditions
predicted to be suitable for all modeled legumes virtually only
expands from present to either future condition, indicating that
some groups may be sufficiently climate-resilient that they can be
maintained in current areas while also introduced into previously
inhospitable areas.

FIGURE 1 | Composite Map of Cool-Season Grass (A) Current Distribution

and Response to (B) RCP 4.5 and (C) RCP 8.5. Colors indicate the number of

species where suitability is predicted to ≥50%. Darker colors indicate areas

where bioclimatic suitability is above the threshold for more species. Included

species are Elymus virginicus, Koeleria macrantha, and Stipa spartea. Time

period is identified in the top of each panel.

DISCUSSION

While we hypothesized that species within each functional
group would have conserved responses to changing climate, this
appears to only be partially true; while forb response was highly
conserved, warm-season grass and legume response were less
so and there were very fewer areas of consensus among cool-
season grasses. This indicates that while functional group may
be a good predictor for climate response for some functional
groups, there are some limitations. The relatively few species
per functional group is particularly limiting to our assessment
of the value of functional group as a predictor of species’
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FIGURE 2 | Composite Map of Warm-Season Grass (A) Current Distribution

and Response to (B) RCP 4.5 and (C) RCP 8.5. Colors indicate the number of

species where suitability is predicted to ≥50%. Darker colors indicate areas

where bioclimatic suitability is above the threshold for more species. Included

species are Bouteloua curtipendula, Schizachyrium scoparium, and

Sorghastrum nutans. Time period is identified in the top of each panel.

response, though is likely to be equally limiting to managers
using SDMs to inform restoration strategy. Additionally, though
we hypothesized that all species would likely shift northwards
(i.e., suitability would decline in the southern-most areas and
increase in the northern-most areas) only forbs exhibited this
response. Given these findings, it is clear that functional group
is not an equally good predictor of response to climate change
across the four functional groups used here. Further exploration
of functional group response to climate change—particularly
with a greater number of modeled species per group—will lend
valuable insight into the climate-resiliency of different groups.
An alternative avenue to merely increasing the number of species
per group would be to use the physiological tolerances of each

FIGURE 3 | Composite Map of Forb (A) Current Distribution and Response to

(B) RCP 4.5, and (C) RCP 8.5. Colors indicate the number of species where

suitability is predicted to ≥50%. Darker colors indicate areas where bioclimatic

suitability is above the threshold for more species. Included species are

Asclepias incarnata, A. syriaca, A. tuberosa, Drymocallis arguta, Lobelia

siphilitica, and Monarda fistulosa. Time period is identified in the top of each

panel.

species to define more ecologically relevant groups for modeling.
Such an approach would be extremely valuable to improving
the relevance of SDMs and would also dramatically increase the
precision of management recommendations from such models.

For Midwestern restorations using seed-mixes, warm-season
grasses and legumes can be expected to have some resilience
to changing climate because these groups show high suitability
in the Midwest in both future conditions (Figures 2, 3). This
response makes them better candidates for inclusion in seed-
mixes than many cool-season grass or forb species. However,
it should be noted that both of those less-resilient functional
groups do have members for whom the Midwest remains
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FIGURE 4 | Composite Map of Legume (A) Current Distribution and

Response to (B) RCP 4.5 and (C) RCP 8.5. Colors indicate the number of

species where suitability is predicted to ≥50%. Darker colors indicate areas

where bioclimatic suitability is above the threshold for more species. Included

species are Amorpha canescens and Dalea candida. Time period is identified

in the top of each panel.

suitable (Figures 1, 4), so some species-specific modeling may be
valuable. Also, for restorations being conducted in the southern
or eastern Midwest, even under the most severe predicted future
all functional groups (and virtually all modeled species) have
predicted suitability above 50%, indicating that responses to
climatic change may be less extensive in those areas, at least in
the near-term.

The variability in suitability response between the two grass
functional groups may be explained by the current prevalence of
warm-season grasses in areas of hotter conditions. Moderately
increasing surface temperatures appear to remain within the
tolerance of warm-season grasses—at least initially—in a way
that is less expected for cool-season grasses. This would also

help explain the northward expansion of warm-season suitability
insofar as unsuitable (i.e., cold) conditions in the northern
United States would become more suitable (i.e., warmer) in the
future. One caveat particularly relevant to the discussion of the
two grass functional groups’ responses is that the terms “warm-
season” and “cool-season,” while useful, should not be taken to be
absolute predictors of thermal tolerance. As brought up earlier,
quantification of true physiological responses of these species
will invariably lead to increased quality of result and should be
pursued in future studies.

A factor that is left unconsidered here but is likely to
affect distributions and suitability for these functional groups
in particular is the impact of changing atmospheric CO2 levels
on the different photosynthetic modes of cool and warm-
season grasses (C3 and C4 photosynthesis respectively). C4

photosynthesis allows for more carbon concentration, and hence
more chemically efficient photosynthesis reactions in low CO2

environments, than does C3 photosynthesis (Taiz et al., 2014).
This physiological difference is likely to affect the response
of grasses to anthropogenic climate change (Griffith et al.,
2017), and could exacerbate the projected responses of these
functional groups. However, it is improbable that a functional
group or species predicted to experience extremely low suitability
in a given area because of some combination of temperature
and rainfall will be able to surmount these constraints if the
concentration of atmospheric CO2 becomes more advantageous
for its photosynthetic mode.

In contrast to the grass species, and despite the larger
number of forb species included, suitability changes were highly
consistent across species (Figure 3). This was also the case for
both warm-season grass and legume response, but the consensus
among forb species is particularly noteworthy because it is
conserved in a novel area and included many more species
than other functional groups. It is also valuable to consider that
the number of species for which suitability is predicted to be
above 50% increases in the Midwest from present conditions
to moderate future and even further from moderate to extreme
future, though never to the extent of agreement found in
the Northeast.

Given that only two legume species included in the seed-
mix drawn from here had numerous enough occurrence records
for model construction, generalizations about this functional
group are especially limited. That being said, areas suitable
for one species tended to be suitable for both across the
majority of the modeled landscape, and the same was true
for unsuitable conditions (Figure 4). The legume functional
group also exhibited very little change between the two future
conditions, which may be indicative of at least some resilience of
this functional group to changing climate. This seems particularly
the case when considering that the suitable area only increases
from present to either futures’ predicted conditions.

The results presented here demonstrate that warm-season
grasses, forbs, and legumes may be expected to show some
consistency in responding to a warming world. Therefore, when
species from within these functional groups are being evaluated
for inclusion in seed-mixes, modeling of other members of
the functional group—either individually or collectively as
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shown here—may provide valuable insights. Desired cool-season
grasses may require more of a single-species approach because
generalization across the functional group does not appear to
be supported. Additionally, our results indicate that the general
assumption of northern range shifts in response to climate
change may not always be robust for these plant species. It is
important however to reiterate that given the constraints of the
limited number of species in each functional group, the strength
of our inferences is correspondingly reduced. In assessing the
potential utility of these models to informing restoration plans,
choosing species for modeling from only those in use in a
particular seed-mix is likely to dramatically reduce the scope
of conclusions that can be drawn. For restoration planners
interested in using this type of modeling approach, it will likely
be more effective to either model species of interest individually
or choose functional groups of interest and then model many
species within those groups (regardless of whether or not those
species are typically in a seed-mix).

In interpreting these results, it is also important to note
that our models make no attempt to include soil, current land-
use, biotic interactions, or other known biologically relevant
factors in informing the predictions of current and future
habitat suitability. In some cases, scientists and managers may
be interested in predicting climate-change induced distribution
changes at a finer spatial scale or including these variables. A
microhabitat model is more appropriate for delving into this type
of question than is a MaxEnt-style SDM (Araújo and Guisan,
2006; Araújo and Luoto, 2007). Likewise, a more mechanistically
specific model will be better able to clarify how photosynthetic
mode (e.g. C3 vs. C4) may buffer against or increase susceptibility
to changing climate (Griffith et al., 2017). A more specific model
is also likely to be able to evaluate the relative importance of each
of these factors and potentially account for changes to the species-
environment relationship that MaxEnt assumes to be constant.
Nonetheless, the results presented here can serve to indicate
areas where microhabitat models may be most profitably applied.
Future models specific to the American southeast, Northern

Great Plains, and upper Midwest could assist in understanding
the potential microhabitat-scale impacts of climate change for
these important prairie species.

The ability of SDMs to create continent-scale
models from relatively few occurrence records, as
demonstrated here, is remarkably useful as a complement
to experimental restoration approaches and finer-scale
modeling methods. By including both modeling and on-
the-ground techniques, restoration projects will be better
informed and will be more likely to restore and conserve
the habitats and communities that will exist into the
future, rather than solely replicating those communities
that existed without consideration for the effects of a
changing climate.
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